Q	Question		Answer	Marks	Guidance	
1	(a)		resistivity = resistance x area (of cross-section)/length	B1	accept equation with resistance as subject allow over for divide by; do NOT allow formula with a word for each symbol	
	(b)	(R = ρ I/A = 1.7 x 10 ⁻⁸ / 6.4 x 10 ⁻³ = 2.7 x10 ⁻⁶ (Ω)	C1 A1	accept 2.66 x10 ⁻⁶ (Ω)	
		(ii)	$P = I^2R$ = $8000^2 \times 2.7 \times 10^{-6}$ = 170 W	C1 C1 A1	select formula; can use P = VI & V = IR ecf b(i) 173 (2.7), 170 (2.66)	
		(iii)	170 x 9.0 = 1530 W or 170 x 24 = 4080 W 1.5 x 24 = 36 (kW h) 4.08 x 9 = 36.7 (kWh)	B1 B1	ecf b(ii); 1 mark for X 9 or 1 mark for X 24	
		(iv)	36 x 15 = 540 p	B1	ecf b(iii) 551(36.7), 555 (37)	
	(c)		I = nAev $8000 = 8.4 \times 10^{28} \times 6.4 \times 10^{-3} \times 1.6 \times 10^{-19} \text{ V}$ $v = 9.3 \times 10^{-5} \text{ (m s}^{-1)}$	C1 C1 A1	select formula correct substitution	
			Total	12		

C	Question		Answer	Marks	Guidance	
2	(a)	(energy transferred from source/changed from some form to electrical energy;	M1		
			per unit charge (to drive charge round a complete circuit)	A1	allow energy <u>divided by</u> charge	
		(ii)	any source has an <u>internal resistance</u>	B1		
			where energy is transferred into thermal energy /lost as heat	B1	there will be 'lost' volts (across the cell when a current is drawn) or V = E – Ir explained	
	(b)	(V = IR 1.2 = 0.2 R $R = 6.0 \Omega$	C1 A1	substitution needed to score mark allow 6 Ω	
		(ii)	1.6 - 1.2 = 0.4 = 0.2 r r = 2.0 Ω	C1 A1	allow 2 Ω	
	(c)	(i)	Q = It = 0.20 x 3600 x 1.5 =1100 correct unit,	C1 A1 B1	substitution needed to score mark 1080 allow 1 mark max for 0.3 or 18 allow C, kC, A s exception 0.3 A h or 18 A min scores 3 marks	
		(i)	energy = QV = 1100 x 1.2 or I ² Rt = 0.2 ² x 6 x5400 = 1320 (J)	C1 A1	ecf (c)(i)1 substitution needed to score mark 1296(1080) allow 1 mark for 1728 (using 1.6)	
		(ii)	I is constant for about 9 to 10 hours because internal resistance remains constant/cell operates at constant emf	B1 B1	QWC must have link between observation and reason to score full marks	
			I falls <u>rapidly/towards zero</u> over last hour or so because <u>cell</u> 's/ <u>chemical energy</u> is used up (so E falls)	B1 B1	accept r of cell increases causing fall in V or I	
			Total	17		

Que	Question		Expected Answers		Additional Guidance
3	а		use of R = ρ I/A = 2.4 x 12 x 10 ⁻³ /9.0 x 10 ⁻⁶ = 3.2 x 10 ³ (Ω)	C1 M1 A0	
	b		$V^2 = PR$ = 0.125 x 3.2 x 10 ³ V = 20(V)	C1 M1 A0	allow V = $\sqrt{(0.125 \times 3.2 \times 10^3)}$ allow substituting V = 20 to prove P = 0.125 W
	С	i	adding resistors in series and then in parallel to show that total resistance is 3.2 k Ω	B1 B1	do not allow any reference to values of V or P, etc in answer
		ii	p.d across each resistor is 20 V so power dissipated is 0.125 W	B1 B1	accept P = $40^2/3.2$ k = 0.50 W so P per resistor = $0.50/4$ = 0.125 W do not accept P _{total} = 0.50 W without proof – scores zero
	d	i	using $R_X = \rho I/A$; $A \rightarrow 4A$ and $I \rightarrow 2I$ $R_Y = \rho 2I/4A = \rho I/2A = R_X/2$	M1 A1	accept figures 24 x 10^{-3} m and 36 x 10^{-6} m ² to give 1.6 x 10^{3} Ω
		ii	same current in X and Y (as in series) power dissipated is ${}^{\beta}R$ or IV where $V_X = 2V_Y$ so X has larger P (dissipation)	B1 M1 A1	allow $P = V^2/R$; $V_X = 2V_Y$ etc. allow 1 mark only for using $P = V^2/R$ or IV and V is larger across X (i.e. not quantitative) so X has larger P
			Total question 1	13	