Question			Answer	Marks	Guidance
1	(a)		resistivity $=$ resistance \times area (of cross-section)/length	B1	accept equation with resistance as subject allow over for divide by; do NOT allow formula with a word for each symbol
	(b)	($\begin{aligned} \mathrm{R} & =\rho \mathrm{I} / \mathrm{A}=1.7 \times 10^{-8} / 6.4 \times 10^{-3} \\ & =2.7 \times 10^{-6}(\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $2.66 \times 10^{-6}(\Omega)$
		(ii)	$\begin{aligned} & \mathrm{P}=I^{2} \mathrm{R} \\ & =8000^{2} \times 2.7 \times 10^{-6} \\ & =170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	```select formula; can use P = VI & V = IR ecf b(i) 173 (2.7), 170 (2.66)```
		(iii)	$170 \times 9.0=1530 \mathrm{~W}$ or $170 \times 24=4080 \mathrm{~W}$ $1.5 \times 24=36(\mathrm{~kW} \mathrm{~h})$ $4.08 \times 9=36.7(\mathrm{kWh})$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	ecf b(ii); 1 mark for X 9 or 1 mark for X 24
		(iv)	$36 \times 15=540 p$	B1	ecf b(iii) 551(36.7), 555 (37)
	(c)		$\begin{aligned} & I=\text { nAev } \\ & 8000=8.4 \times 10^{28} \times 6.4 \times 10^{-3} \times 1.6 \times 10^{-19} \mathrm{v} \\ & \mathrm{~V}=9.3 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	select formula correct substitution
			Total	12	

Question		Answer	Marks	Guidance		
$\mathbf{2}$	(a)	(energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	A1	allow energy divided by charge	M1
:---						

Question			Expected Answers	M	Additional Guidance
3	a		$\begin{aligned} & \text { use of } \mathrm{R}=\rho \mathrm{l} / \mathrm{A} \\ & =2.4 \times 12 \times 10^{-3} / 9.0 \times 10^{-6} \\ & =3.2 \times 10^{3}(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	
	b		$\begin{aligned} \mathrm{V}^{2} & =\mathrm{PR} \\ & =0.125 \times 3.2 \times 10^{3} \\ \mathrm{~V} & =20(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \text { A0 } \end{aligned}$	$\begin{aligned} & \text { allow } \mathrm{V}=\sqrt{ }\left(0.125 \times 3.2 \times 10^{3}\right) \\ & \text { allow substituting } \mathrm{V}=20 \text { to prove } \mathrm{P}=0.125 \mathrm{~W} \end{aligned}$
	c	i	adding resistors in series and then in parallel to show that total resistance is $3.2 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	do not allow any reference to values of V or P , etc in answer
		ii	p.d across each resistor is 20 V so power dissipated is 0.125 W	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	```accept P=40}/3.2\textrm{k}=0.50\textrm{W so P per resistor = 0.50/4 = 0.125 W do not accept }\mp@subsup{P}{\mathrm{ total }}{}=0.50\textrm{W}\mathrm{ without proof - scores zero```
	d	i	$\begin{aligned} & \text { using } R_{X}=\rho I / A ; A \rightarrow 4 A \text { and } I \rightarrow 2 I \\ & R_{Y}=\rho 2 I / 4 A=\rho I / 2 A=R_{X} / 2 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	accept figures $24 \times 10^{-3} \mathrm{~m}$ and $36 \times 10^{-6} \mathrm{~m}^{2}$ to give $1.6 \times 10^{3} \Omega$
		ii	same current in X and Y (as in series) power dissipated is $I^{2} R$ or IV where $V_{X}=2 V_{Y}$ so X has larger P (dissipation)	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow $P=V^{2} / R ; V_{X}=2 V_{Y}$ etc. allow 1 mark only for using $P=V^{2} / R$ or IV and V is larger across X (i.e. not quantitative) so X has larger P
			Total question 1	13	

